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Including Anharmonicity in the Calculation of Rate Constants. 1. The HCN/HNC
Isomerization Reactiorf
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A method for calculating anharmonic vibrational energy levels in asymmetric top and linear systems that is
based on second-order perturbation theory in curvilinear coordinates is extended to the bound generalized
normal modes at nonstationary points along a reaction path. Explicit formulas for the anharmonicity coefficients,
Xj, and the constant territy, are presented, and the necessary modifications for resonance cases are considered.
The method is combined with variational transition state theory with semiclassical multidimensional tunneling
approximations to calculate thermal rate constants for the HCN/HNC isomerization reaction. Although the
results for this system are not very sensitive to the choice of coordinates, we find that the inclusion of
anharmonicity leads to a substantial improvement in the vibrational energy levels. We also present detailed
comparisons of rate constants computed with and without anharmonicity, with various approximations for
incorporating tunneling along the reaction path, and with a more practical approach to calculating the vibrational
partition functions needed for larger systems.

1. Introduction linear species, 8 — 6 should be changed td\3— 5.) Thus,
the energy levels of these modes directly affect the calculated

variational transition state theory (CVAT} provides a practical reﬁctlon r;’;\hte constant tthrough the} ﬁ?rtltlog functlonflr]: cq dl’
method for calculating reliable thermal rate constants for a whereas the zero point energy or these degrees of Ireedom

reacting system. Its application requires the evaluation of determines the vik:_)rationally gdiabatic ground-state potential
partition functions both for the reactant(s) and at a series of €N€rgy curve that is used to incorporate quantal effects (e.g.,
points along the reaction path, which we take here to be the tunneling) |;1§£)1'[1he description of the reaction coordinate degree
minimum energy path (MEP), that is, the path of steepest ©f freedom:

descent in mass-scaled Cartesian coordinates starting from the Because the calculation of the generalized normal modes
saddle point The calculation of the partition functions is greatly ~requires that the reaction coordinate degree of freedom be
simplified by assuming that the translational, rotational, vibra- projected out of the vibrational space at nonstationary points,
tional, electronic, and reaction coordinate degrees of freedomthe generalized normal-mode frequencies depend on the choice
are separable, and that the translational and rotational contribu-of coordinate systert? 14 Rectilinear (e.g., Cartesian) coordi-
tions can be treated using classical mechanics and the rigid rotomates, which have generally been the standard choice for the
model? The remaining degrees of freedom are treated quantumapplication of reaction-path methods to polyatomic systetfs?
mechanically. In particular, the vibrational contribution to the can lead to imaginary harmonic frequencié$® However,

rate constant at a poistalong the MEP is given by the ratio of  physically reasonable results are obtained when the generalized
the vibrational partition function atto that for the reactant(s), normal modes are expressed in curvilinear coordingt&s??
where the vibrational partition functioQyin(T), at temperature  (e.g., bond stretches and angle bends). In addition, the widely

For a given potential energy surface (PES), canonical

T for a nonlinear species witN atoms is defined as used harmonic approximation, which leads to very simple
formulas for the vibrational energy levels and partition functions,
Quip(M = Z exp(—E/KT) Q) can be innaccurafe.”23-2” To include anharmonicity along the
n reaction path (as well as at stationary points) in a fashion that

) o ) is consistent with curvilinear coordinate generalized normal
Here E, is the energy of a vibrational level (relative to the modes, we herein make use of second-order perturbation theory
bottom of the vibrational well) with a collection of quantum i, cypvilinear coordinate® This approach, which we denote

numbers indicated by, k is Boltzmann’s constant, and thé a5 pT2¢ and which has been shown to provide fairly accurate
summation is carried out over the degrees of freedom corre- iy ational energy levels in bound molecuf8s3? takes into

sponding to the “bound mode” vibrations. For a reactant, these gccount hoth kinetic and potential anharmonic contributions.

3N — 6 degrees of freedom are the true bound vibrational modes Another consideration is that evaluati@s(T) by direct

of the species, whereas for a point along the MEP, thébe 3 ummation over anharmonic energy levels I;s im yIied ineq 1l

7 degrees of freedom are generalized normal modes representin . gy ’ P qi
not practical for systems containing more than a few atoms

the “bound” internal motions of the reacting complex that are b i ber of t b hibitivei
locally orthogonal to the motion along the reaction path. (For a ecause the numoer of lerms bECOMES pronibitiveiasreases.
In addition, the breakdown of perturbation theory for high-

T Part of the special issue “Donald G. Truhlar Festschrift”. energy states may be _SeVé‘?é’-ZG'% To circumvent these
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simple perturbation theory (SP¥),in which Quin(T) is ap-
proximated by

—eog/KT

Qiw(M=—"" )

3N-6
(l _ e*Ai/kT)

where the ground-state energy, and the fundamental excita-
tion energies{A;, i =1, ..., N — 6}, are evaluated by second-

Isaacson

we first compare harmonic results obtained with rectilinear
coordinates and with curvilinear coordinates. We then compare
rate constants obtained from eq 1 with harmonic energy levels
and with anharmonic levels. Finally, we compare rate constants
obtained by direct summation over anharmonic energy levels
and by SPT. All of the calculations reported herein were carried
out with the widely used PES of Murrell, Carter, and Halonen
(MCH).36 Although this is not an accurate PES (e.g., the
isomerization barrier of 12 168 crhis too low, and there is

an anomalous local maximum along the reaction path on the

order perturbation theory in Cartesian coordinates (denoted product side of the saddle poirf)3it is a global analytic PES
simply as PT2). Those authors showed that this approach workedhat describes the entire HCN/HNC isomerization process. Thus,
quite well in several cases of nonlinear systems containing from it should provide reasonable results for the rate constant
two to six modes$:34:35In addition, this author showed that SPT comparisons outlined above. Section 2 describes the second-
is roughly as accurate as direct summation over PT2 energyorder perturbation theory calculation of the vibrational energy
levels for the HCN molecule and at the saddle point for the levels in curvilinear coordinates (PT2C) along a reaction path

HCN/HNC isomerization reactiof.

as well as for bound species, and the calculations for HCN and

In this paper, our preliminary investigation of the HCN/HNC HNC as well as at the saddle point for the isomerization reaction

isomerization reactiohis extended to the calculation of CVT

are discussed in section 3. Selected details of the rate constant

rate constants, both with and without semiclassical transmissioncalculations are given in section 4, and the results are presented
coefficients to account for reaction-coordinate tunneling. Below in section 5. Our conclusions are summarized in section 6.

2. Theory

Generalized Normal-Mode Analysis in Curvilinear Coordinates.Along a reaction path, the first derivatives of the potential
energy are nonzero except at stationary points. Thus, to carry out a generalized normal-mode analysis at an arbitrary point along the
reaction path, one must first project out from the second derivatives the first derivative contributions. This yields generalized vibrational
frequencies ;) as well as generalized normal mode€)(that are linear combinations of the curvilinear coordinatgy (

0, = Z L Q )

These generalized vibrational frequencies and normal modes are determined in the “spectroscopists units” used below (wherein both
frequency and energy have units of tihas follows. Starting from the standa@andF matrices of Wilson, Decius, and Cro¥s,
we defineG' = hG/4x?c andF’ = F/hc. Then, following Jackels et a3 at a point along the reaction path we define the projected

force constant matrix

fP=[1-Gp]' F[1 - Gp] (4)

where, ifb is the gradient in curvilinear coordinatgs = bb"/bTGb. The nonzero eigenvalues and corresponding eigenvectors of
the nonsymmetrical'f 'P matrix are then obtained as discussed in Jackels &t al.:

G'fPA=AQ (5)

The square root of the positive eigenvalg is equal to the generalized normal-mode frequencin cm~2, and theith column

of the A matrix is the corresponding unnormalized generalized normal mode. When normalized as outlined in Jackglsvet al.,

obtain the normalized generalized normal mode coefficieqtsrhich have units of cA® if 0, is a stretch and cnd’2if 6, is a bend.
Vibrational Energy Levels. Both potential and kinetic anharmonic contributions must be considered in order to calculate anharmonic

vibrational levels of anonrotatingsystem within the space of the bound curvilinear generalized normal m&#ego see this, we

express the pure vibrational Hamiltonian in terms of the generalized curvilinear normal coordihaées] the conjugate momenta,

P,, ago40

H=2S PP+ VvtV (6)
2% o

where, within the context of second-order perturbation theory discussed Bélésva constant depending on the geometry and is

discussed at the end of this section,

I ] A !
470" 2% igan X
1
V=3 Z oQ+ Y frQQQ+ fija QI Q QQ ®
<72k i=|=ks=l

(All summations in this paper are unrestricted unless otherwise indicated.)gflé@n element of th&' matrix transformed to
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09 Gy
A

82gij 1 &Gl
0Q0Q) 2 r;u 00,00,

curvilinear normal coordinates so that

L L L 9

Ly e Ll (10)

while fix andfjq are third- and fourth-order force constants along the normal modes, that is

fij = (Nijk)_lZ(—aav )Lri Lol (11)
#51\00, 00,00,

fijkl = (Nijkl)71 Z (—84\/ )Lri sz LacLu (12)
r§7u\ 00, 00,00,00,,

whereNjx andNj are integers that depend on the number of identical subsé¥ipts.
To use second-order perturbation theory to obtain anharmonic vibrational energy levels, we write

H=HO+IH® + 22H® + v (13)

where, for the specific case of @symmetric tof?

HO =% S P! +§ Y 0 (14)
H® ZE ﬁ QPP+ z fi Q Q Qc (15)
2.,1, an i<]=k
Ho =2 i XQP P+ fin Q Q QcQ (16)
Zi,], . anaQI k>l i b A ikl 1 ) <k |

The operatoH© is the standard Hamiltonian for uncoupled harmonic oscillators; its eigenvalues and eigenfunctions are
0) — 1 0) _
B = z i\ Ny +5 andW;” = |_| %i Q) (17)
1 i

wherey,(Q) is the one-dimensional harmonic oscillator eigenfunction sl the collection ofn; values.
From nondegenerate second-order perturbation theory, the vibrational energy of Is\glen by

mHYm I HY|nO
E,=Ey + mHY + HOn+ (18)
i @ _ g0
n m

where|nDrepresent$lIJ§1°’D Once the matrix elements have been evalu$ég, can be written as

1 1 1
En:E0+Zwi(ni+5)+Zxﬁ(ni+£)(nj+£) (19)
] 1)
where, using the notation
| 99; B oy,
Gijx= (3_Qk) andg; = (3Qk3Q| (20)

we find tha#8
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1 3 _ 3 15 _ 3 _ 1
Xij = gu i 2 |||| Wi 2 Egﬁl - Z f ﬁl w; gu i flllw ];(4(”2 - w]) [_ i j0; ; 2(8('()i2 - 3wj2) + 5 i gij,iwi2 -
1
4 gu |w +- fll]w w (8w - 36() ) + gu] fIIJ i (8(0|2 - wjz) - gij J 1:iij (21)
1 1 1 1 . 3 _3
Xj = gu JOiw; Y- fu”w a)] Qu i Gji0; w — 3 fjo; CU Egii,i fjw; “o; = E g;, fiw "o —
_ _ 41 _ 1
z [9i x Gj kPi0j0 2+ Ay fj(wjo ‘UE) L+ 4g; y fiwio; a)k ] - 2(460i2 - wjz) l’z gﬁ,jwiswj Y+ gﬁ,ia)iwj - 5 Gii j G jwiw;
k¢|J
2 *1 1 -1 2 2
1:iijw — Giij flljw w Y+ 9y fu] Z Z ijk { [gu K Wj + nglw ; wk + glk]w w wk](wk Wi — wj) +
k=T,

2 2 2 1, 2 2 2
205 k G @i (0] — 0f — ) + 2G; | Gy ;@i (CU wf — wp) + A9y G j0iw; wk +13 k@i 160,' Yop — of - ;) =

2 -1, 2 2 2

4g; « i) — 20 figoi a)(w - w; _wk) 20y fiwiw; (0f — o] —wi} (22)

with Djk = (i + wj + w(wi — vj + w(wi + v] — w)(wi — vj — wy). The constant terno, which is of no importance in
spectroscopy and was not considered by Q@de,necessary for the absolute values of the energy levels, and hence, for the
partition functions. It is given by

3 3 3 7 1 3 3
E.= ——g it —fiw i —g ——flo '+ —g f.o )+ Qo - w?)—l[_ P wl——g. g 0w+
0 Iz 16 {INI] 8 mm I 64 1,1 16 m I 16 1,1 I JZI I ] 64 1,71 8 1, 1,10
3 3 1
2 2 _ 1 2 2 2 2, 2 2 2 2, 2
— Ui _fuw i fig =05 % | — — Dik 205 i + Gy i Gj@j (0] — of — i) + G Gy jwi (@ —
169]’ 1 16 " 69 J iy 491, J] 16i¢]z¢k lk[ Gij K i T Gk Gk, J( ] K 9ij k Gik (
1
‘sz - wﬁ)] - z ijk [f ik — Gijk fijk(wﬁ - wlz - sz) ~ Oikj fijk(wjz - ‘Uiz - WE) ~ ik, fijk(wi2 - wj2 - wﬁ)] (23)
i<]<k

To use second-order perturbation theory to obtain anharmonic vibrational energy levelintarapecies, we again write
H=HO+ IH® + 12H@ + v (24)

where, withi, j, k, andr referring to nondegenerate modes ar@hdt each referring to a pair of doubly degenerate modes, the terms
that contribute to the vibrational energy of a linear specie$are

1 1
o) _ — 2 22 = 2 —252 22
H? = " Z(Pr + wfQ) + . Z(Ps + QP + Qo) (25)

1 1
H®=> % 0 Q (PSPY+ PP) + % et P (QPE+QPY + ) i QQQ+ Y £ QL+ QQIQ  (26)

i<]=k rs<t

1 1 1 _ 1 _
H® =~ Z(gssssQipi + Aéésfi) +- Z grr,sngpr2 +- Z Ossrr QrZ(Pi + Qs przgs) +- Z Osstt Qtz(Pg + Qs ZP;ng) +
24 273 2% 2&
EbfaabeiQﬁ (27)
as<

Herea and b can refer to either nondegenerate or degenerate modes; for a degenerate pair of modes, bo®s,pe)ararfd
Cartesian, Q;, Q), representations have been used, where

Q< = cosysQ, Q5= siny, Qy, P = cosy P — siny Qg P, , andP; = siny P, + cosy Q. 'P, (28)

The operatoH®© is again the standard Hamiltonian for uncoupled harmonic oscillators; its eigenvalues and eigenfunctions are

EQ = z w,)

whered, = 1 for a nondegenerate mode ad= 2 for a doubly degenerate modg;(Qi) is a one-dimensional harmonic oscillator

eigenfunction, anany(Qs, xs) is the polar representation of a two-dimensional isotropic oscillates;then the collection ofi;, ns,
andls values.

n~|—

| andw® = [1v0 @[] ¥, Q2 (29)
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From degenerate second-order perturbation theory, the vibrational energy of lisvagain given b$?
mHY M HY N0

E,=E+ mHY + HOnC+ S (30)
&  EO_pgo
n m

where|nDrepresent$1Pf1°)Dand where at least one of theor ns values differ injnCand|m0 (In principle, E, should be determined

by diagonalizing an energy matrix whose elements are given by the formula above, binwiplaced byin'[] wherels, It = I,

lyorlg If =15+ 2, Iy F 2. However, the latter case is only important for thdoubling energy? which has been omltted here and

is unimportant for the zero point energy and the fundamentals. Thus, the equation above is written for the diagonal case only.)
Matrix elements of the operators appearing in the above equation have been obtained in Hermitian form by multiplying the matrix
representations of the basic operators given in the liter4tufeé From theseE, can be written as

d d,
En=E0+Zwa(na+§+Zx n,+— ( Zx,,st (31)
3 a
where®
3. ., 1 2 ~2 210 2 2
X zifiiiia)i P —fhor’ 2(4“’ — o) f,“a)i w; (8w — 30j) (32)
=
_ 1 _ 2 -1 -1 1 2y—1
=1

41 4=
Dijkl[z1 f ﬁkwi le Yok — of = wlz)]} (33)
_1' +§f 2 _ N (402 — 2—1&2 -2, 20 2_32_22 2+1- 4z f 20, %(8w?
Xss= 4gssss 2 sss@¥s Z( s wr) 16gssrwr ws( Wg wr) 4gsr,swr gssr gsrsw rssVr @ ( s
r

360 ) + gssr rSSa)I’ (8(1) ) gSI'S ISS| (34)

1 -1 1 1 -3 -1 3 -3 1 2 -1
Xis = — Oy sV Wg +- gssrrw w +- frrssw w 1:rrr frsswr Wg T~ gssr frrra)r Ws— — [2frrk fkslwrwkws) +
4 4 2 4 4 &
-1 -2 2 23—1 1 2 1 -1
gssk 1:rrkwr Wy (1)5] - (4(”5 - wr) [Z gssrwr w + gsrs Ws — gssr gsrswrws + f rsswr s gssr frssa)r Ws +

B |1
Osrs frsswrws 1] - Z Drs%{ Z[gzr,twr + gstrw w wt + gtr @rw wt](wt - w —w ) + gsrt Oir s, 0 (wg - wf - wtz) +
=5
1

- 2_ 2 2+ +1f -1 -1, 2 2 2 _ f _1‘ f -1 2_ 2
2gst,r gsr,twrws(wr a)s wt) gstr gtr, @ 6’)t rst(Ur w (wt Wy a)s) gsr,t rsta)rws ngnr rsta)r ws(ws Wy

1 _
(Utz) - 5 O s frstwrws l(wr2 - 0)5 - a)tz)} (35)

1 _ 1 L 1 1 _ _ o
Xt= = gssttwswt T+ 5 fsstﬂ’s 1wt - E Z[Z Ossr Gut,r s 2wswt + frss frtt(wrza)s(’ut) Y+ Ghtr frsswr 2ws lwt)] -

T
1 5 1 1 5 5
z Drst gsrtw ws‘”t + gst,rwsa% (w - Wg — 6Ut) +- gsrt O, swrwswt+ gstr Osr i wt(wt [ ws) +
1‘ 2 _ 2_ 2 + = f 2 -1 2 _ _ f _ 2 } f _
1 Ostr G s0s0(w5 — @y — ) 8 s o (0] — 0f wt) gsrt sty (a) wf = ) — ngt,r rstWsWy

1 _
thr,s frsta)s 1wt(wt2 - wrz - wg)} (36)

1 1 B |11 1 1 1 B 1
X == Z Ossss — 5 fsssgus 2 Z(‘]’wg - wrz) 1’1_6 ggsrwi + Z ggr,swr2 - 5 Gssr gsr,swi + Zf rzssws - Z Gssr frss + Osrs frss (37)

s's

1 1 1
X, z Drst gsrta) w +- gst,ra) 6')t + 4gsrt Oyr s (w o a) o 6’)t) + 4gst,r gsrtws(w B a) B wt) +

1 2

1 2 2 1 2 2 2 1 2 2 2
gstr Oir st (wt - w —w ) +- frst 4 ~ Osrt frst(wt W~ ws) - Z Ostr frst(wr - Wg wt) - Z O s frst(ws W, wt) (38)
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1 1 _ 3 _ 7 _ .3 _ 1
E,= _Z’Z gssss_éfsssg)s ] + Z’éfrrrrwr - 1_6fr2rrwl’ + 2(4(1)? B wlz) l’:I._Gfizii(’ui 2] - i<]z<k Dijkl[zfﬁk] +

=l

1 1 1 1 1 1

2 2y—1 2 2 2 2 2 2 -2 -1 2 2 2

Z(%s - wr) [1_6 OssrWs + Z Osrs®y — E Ossr GsrsWs + Zf rs¥s — Z Ossr frss + Osrs frss] - r’SZq Drst ’5 Osr 10 Wg +
1 1 1 1

Zggtrwiwtz + Z Osrt gtr,'swrz(wr2 - (’Ui - wtz) + Z Ostr gsr,twg(wg - wf - wtz) + Z Ostr gtr,s(’utz(wt2 - wrz - wi)] -

|1 1 1 1
z Drsg[a f rzst - 5 gsl;rfrst((")r2 - wi - wtz) - 5 Osrt frst(wt2 - wrz - wi) - 5 O s frst(wg - wrz - wtz)] (39)

r<s<t

Note that in applying these equationss(+ Xs;) should be replaced byx2.4
The V' term in the Hamiltonian (cf. egs 13 and 24) arises from the noncommutativity of the position and momentum operators;
it is evaluated as follows. For a nonlinear molecule, it is given (imYrpy30:48

h IGj\[aInT #InT) 1faInT\[aInT
V'=—Z — +G; + - (40)
1erc 47|\ 96, J\ 96 06,00; 4\ 00, 00;
whereT is the ratio of the determinants of the moment of inertia tensor@nb = |1|/|G|. For a linear bound ABC system, the
singularities inV' can be removed by a change of variabtethe result is
_ h[ 1 G
V= 2.7tc(mBrlr2 6 ) (41)

wherer;, r; are the AB and BC distances, respectively, &gglis the bend-bend element of th& matrix. Along the reaction path,
the expression fo¥' must be restricted to theoundcurvilinear normal coordinate®;

09 2
vl Z{(_J)(a In V)+gij (a Iny +}(8Iny)(8 In y)] w2
8b$'dnd aQ/\ 9Q 3QaQ/ 4\ aQ |\ iQ

where theg matrix is obtained by transforming th&' matrix to normal coordinates

9= Ghlim Lin' (43)
mn

and wherey = |1|/|g|. This expression foY" is efficiently evaluated numerically using finite-difference methods for the derivatives.
Anharmonic Resonance Along a reaction path, the generalized frequencies change continuously. Thus, at some point on the
path, it is possible thatd2 ~ w; for a pair of frequencies, or that; + w; ~ w for a triplet of frequencies. (Of course, the same
situation arises in certain bound molecui&®?) In such resonance situations, the accidental near degeneracy of two or more
unperturbed (harmonic) vibrational energy levels relative to the interaction force constant that couples them can cause a breakdown
of perturbation theory, as some terms in eqs-22 and egs 3239 may blow up. (We defindj- or ijk-type interactions to be
resonant if thefij /[wiw (2w — w;)]| ratio or the[fix /[(wiwjw) ¥ wi + o; — wy)]| ratio, respectively, exceeds a minimum value,
p. A value forp of 0.20 has been found to distinguish between resonant and nonresonant intePfetdhisthese cases, one first
removes the resonant contributiéh® from the energy levels of asymmetric top or linear systems by making the replacements in
the anharmonicity coefficients and Ky that are given by eqs S44 to S74 in the Supporting Information. These substitutions yield
“deperturbed” vibrational energy leveéldlf desired, the resonant levels can be improved by including the coupling between the
degenerate levels directly. However, this has been shown to have little effect on the resulting vibrational partitior?§waradion
was not done here.

3. Vibrational Energy Levels energy. Direct numerical differentiation in internals was also

Along the reaction path for the HCN/HNC isomerization, the used for the derivatives of the matrix. o
system is described by three internal coordinates, two bond FOr HCN and HNC, the normal-mode analysis yields four
stretches and a nonlinear bend, whereas for HCN and HNC,bound modes, two stretches and a doubly degenerate bend. Each
the system is described by four internal coordinates, two bond vibrational state of these linear species can thus be labeled by
stretches and two linear bends. All of the internal coordinates four approximate quantum numbers and denotedagvs,
were expressed in difference Cartesians as discussed in JackeMhere v, vz, and v3 are associated with the CN stretch, the
et al.13 except the linear bending coordinates were defined as degenerate bend, and the CH or NH stretch, respectively, and
the arcsine of the expressions given in egs 34a and b of thatwhere, for given,, the vibrational angular momentum quantum
work so that these coordinates would be true angles measurediumberl can take on the values, vz — 2, ...,—v2 + 2, —v2."
in radians. Thes matrix was then constructed as in Jackels et For a point on the MEP, however, the generalized normal-mode
al.1® but the F matrix was evaluated by direct numerical analysis discussed above yields two bound modes that mainly
differentiation in internal coordinates of the analytic gradient involve the two stretching motions; the bending motion roughly
in internals, as were the higher-order derivatives of the potential corresponds to motion along the reaction path. Each generalized
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TABLE 1: Zero Point Energy 2 and Fundamental® (in cm™?) 50
for HCN, HNC, and at the Saddle Point
level harmonic PT2 PT2C accurate 40 :
HCN
00°0 3520.88 3480.83 3485.26 3483.24 ) N\
10°0 2127.46 2097.26 2097.38 2096.89 = 30 |
01'0 731.71 715.41 714.93 719.95 'g' /
00’1 3450.89 3308.67 3315.81 3318.56 =
HNC < 5L /
00°0 3422.33 3377.34 3383.75 3380.21 > )
10°0 2060.88 2029.25 2029.52 2029.88
01'0 494.05 481.56 482.59 483.67
00’1 3795.68 3620.09 3631.54 3632.45 107 .~
saddle point
00 2676.32 2647.60 2647.40 2647.25 0 ) . . . . .
10 2223.53 2157.66 2157.50 2149.70 3 P ) 1 5 3 4 5
01 3129.11 3002.08 3001.76 3001.29
s (bohr)

aMeasured from the bottom of the corresponding vibrational well.
bMeasured relative to the zero point energy.

bound vibrational state is then labeled by just two quantum
numbers and denoted agv,, wherev, and v, are associated
with the CN stretch and the stretch of the hydrogen relative to
the CN bond, respectively.

Considering the potential effects of resonance for this system,
we found that for all cubic interactions, tiig /[wiw;*%(2wi —
w;)]| ratio is no larger than 0.08, except for thes interaction
in HNC, for which it is 0.22. Because removing tHes
contribution from the vibrational energy affects only the excited
states’® treating this interaction as resonant affects only the rate
constant for the reverse reaction. In fact, numerical tests
demonstrate that removing this interaction raises ti& BINC
fundamental by 4.0 ct and changes the reverse rate constants
in at most the fourth significant figure for the temperatures
considered here (2664000 K). Choosing the value @fto be
0.07 also treats thi,, interaction along the MEP as resonant,
which affects the generalized excited states and vibrational
partition function for the generalized transition state. However,

Figure 1. Calculated classical potential energer (solid curve),

and ground-state vibrationally adiabatic potential enexy§,(dashed
curve, harmonic; dotted curve, anharmonic), as functions of the reaction
coordinate s.

too high by 36 cm? and the fundamentals are too high by 73
cm™1, with the errors in the fundamentals involving the hydrogen
stretch being particularly large. Thus, we would expect the
vibrational partition functions (and, hence, the rate constants)
derived from the perturbation theory levels to be fairly accurate,
whereas we expect the error in the vibrational partition functions
obtained from the harmonic levels to be significant, as discussed
before?

4. Rate Constant Calculations

Figure 1 shows the classical potential energy cuMig:=f)
and two ground-state vibrationally adiabatic potential energy
curves ;%) along the reaction path. The reaction coordinate,
s, is defined as the signed distance along the MEP from the
saddle pointg= 0) to HCN (s < 0) and HNC ¢ > 0) through

removing this interaction does not change the rate constants tomass-scaled Cartesian coordinates, where the coordinates are

three significant figures. Thus, all of the results quoted in this
paper include all cubic interactions, that is, no interactions have
been removed.

scaled to a reduced mass of 1 afilhe solid curveVyep(s),
is the Born-Oppenheimer potential energy along the reaction
path, whereas the two upper curves$(s), are sums o¥/yep-

Table 1 lists the accurate zero point energy and fundamentals(s) and the total zero point energy for the bound vibrational

for HCN, HNC, and at the saddle point for the HCN/HNC
isomerization on the MCH surfadéAs discussed previousky,
these were obtained for HCN and HNC from discrete variable
calculations with the DVR3D suite of progrartfayhereas those

for the saddle point were obtained from the vibrational SCF-CI
method with the POLYMODE prograft. These values agree
quite well with those computed by perturbation theory in
rectilinear coordinates (PT2)and in curvilinear coordinates
(PT2C, present work). In fact, the average absolute error in the
zero point energies is only 1.9 cifor both approximate

degrees of freedom orthogonal to the MER.&or the dashed
(upper) curve, the zero point energy was computed harmonically,
whereas for the dotted (lower) curve it was calculated by the
PT2C approach discussed above. We note in passing that
projecting out the reaction coordinate direction in rectilinear
coordinates and using the PT2 approach in place of PT2C would
not change the energies of these curves by more than 0.02 kcal/
mol. We also note that the curves in Figure 1 have been obtained
from the actual MCH potential energy function only upster

0.75 bohr. Fos > 0.75 bohr, the actual MCH potential energy

approaches, whereas the average absolute errors in the fundafunction exhibits a local minimum along the reaction path. Thus,

mentals is 4.8 cmt for PT2 and 2.4 cmt for PT2C. (It should

be noted that the present PT2C results for HCN are in almost
exact agreement with those reported in ref 30. In addition, as
noted in that work, if the same Hamiltonian is used in both
cases, rectilinear and curvilinear coordinates lead to identical

we extrapolated the energy curves for 0.75 bohr to their
HNC limits by simple exponential functions, as discussed
elsewheré.Fitting the exponentials to the actual energy curves
ats = 0.75 bohr yields an exponential range parameter of

1.1 bohr?. Because this value af produced energy curves

perturbation theory energy levels when no resonances arethat appeared to decay too slowly, the valuecofas arbitrarily

removed® as is the case here. The differences between the
present PT2 and PT2C results are likely due to the neglect of
small vibrational angular momentum terms in the usual ap-
plication of perturbation theory to the Hamiltonian in rectilinear
coordinateg?59 In contrast, the harmonic approximation leads
to fairly large errors: on average, the zero point energies are

changed to 1.4 boht to better represent the true situation in
this system. To examine the sensitivity of the results on the
choice ofa, below we compare rate constants obtained with

= 1.4 bohr?! and witha. = 1.1 bohr*. When the curvature of
the MEP is neglected, the.5(s) curve provides an effective
barrier for reaction path tunnelirig:° Thus, we find below that,
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at low temperature, the choice afhas a large effect on rate TABLE 2: Calculated Rate Constants for the HCN/HNC
constants that include tunneling. However, given the closenesslsomerization Reactior?
of the V.(s) curves for which the zero point energy is computed T (K) CVT

harmonically or by the PT2C approach, we expect that the

CVT/MEPSAG CVT/CD-SCSAG

. ’ ° mle _ 200 7.69x 10723(1.00) 1.01x 1071°(0.98) 4.06x 1071°(0.98)
inclusion of anharmonicity will only have a mild effect on the 7.32x 102%(1.03) 9.55x 10-2°(1.01) 3.85x 107°(1.01)
rate constant, as shown below. 250 1.25x 107'5(1.00) 2.32x 107%*4(0.99) 4.37x 1074(0.99)
CVT rate constants for the HCN/HNC isomerization reaction 1.20x 107°(1.03) 2.21x 10*%(1.02) 4.18x 107**(1.01)
298 5.74x 10711(1.00) 2.98x 1071°(1.00) 4.02x 1071°(0.99)

were obtained exactly as described previod$hpr results that

5.53x 10°11(1.02) 2.86x 10°1°(1.02) 3.86x 1071°(1.02)

are converged to at least three significant figures, the MEP was
computed by the Euler single-step meth&twith a step size
between gradient calculations of 0.0001 bohr and a distance
between generalized normal mode calculations of 0.005 bohr.
The generalized transition state was optimized for each tem-
perature by finding the maximum of the generalized free energy ;54
of activation with respect to the reaction coordinate. For
comparison, we also calculated conventional transition state 2400
theory (TST) rate constants, which result from locating the
transition state at the saddle poist= 0.0). The vibrational ~ 4000

400

600

9.25x 1075 (1.00)
8.94x 1075 (1.02)
1.06x 17 (1.00)
1.03x 10? (1.01)
7.37x 10° (1.00)
7.08x 10° (1.00)
1.86x 10° (1.00)
1.77 x 10° (1.00)
1.11x 101 (1.00)
1.03x 10 (0.99)
1.55x 1012 (1.00)
1.37 x 1012(0.97)

2.00x 107 (1.00)
1.93x 1074 (1.01)
1.45x 107 (1.00)
1.40x 107 (1.01)
8.22x 10° (1.00)
7.89x 10° (1.00)
1.95x 10° (1.00)
1.86x 10° (1.00)
1.13x 10" (1.00)
1.05x 10" (0.99)
1.55x 10'2(1.00)
1.38x 10'2(0.97)

2.25x 107 (1.00)
2.17x 1074 (1.01)
1.52x 107 (1.00)
1.47x 107 (1.01)
8.34x 10° (1.00)
8.00x 10° (1.00)
1.96x 10° (1.00)
1.87x 10° (1.00)
1.13x 10" (1.00)
1.05x 101 (0.99)
1.56x 10'2(1.00)
1.38x 102(0.97)

partition function at temperatufewas computed either by direct

summation over the vibrational levels (eq 1) up to the lowest i :

dissociation energy of the system (45 676 &or by the SPT ~ Whereas lower entry is anharmonic result. Ka@/kcar Or keradker2
; ; ratio is given in parentheses.

approach (eq 2). Quantum effects along the reaction coordinate

degree of freedom, which account for hydrogen tunneling, were tag| E 3: CVT Rate Constants (in s°2) for the HCN/HNC

included by multiplying the CVT rate constant by one of two [somerization Reaction

semiclassical adiabatic ground-state (SAG) transmission coef-

aUnits are s For each temperature, upper entry is harmonic,

e o 7. . T(K PT2C SPT
ficients1-39The MEPSAG transmission coefficiéit10is based ) > .
on tunneling along the MEP, whereas the centrifugal-dominant 200 7.32x 1015 7.32x 1015
ll-curvature (CD-SCSAG) transmission coefficiéfin- 250 1.20 107 1.20> 107
sma > C 298 5.53x 1011 5.53x 1071
cludes the curvature-coupling of the reaction path to the 400 8.94x 105 8.94x 10°5
generalized normal modes of the transition state. The CD- 600 1.03x 1 1.03x 1C?
SCSAG transmission coefficient thus allows for corner-cutting 1(5388 Z-g?x ig Z-égx ig
1 i i 8 . X . X
during tunneling and is more accuraté: 2200 103 10t 107 % 10t
4000 1.37x 1012 1.50 x 102

5. Rate Constant Results . I . . .
in the vibrational zero point energies lead to a harmonic rate

constant that is about 5% higher than the corresponding
although the location of the “dynamic bottleneck”, that is, the anharmonic value at 200 K. This effect decreases to around 4%
value ofs at which the generalized free energy of activation is at 298 K, but differences in the excited vibrational levels cause
a maximum, increases toward the product with increasing a further increase in the difference between the harmonic and
temperature, it remains less than 0.025 bohr up to the highestanharmonic results that becomes more pronounced with increas-
temperature considered in this study (4000 K). Because of this, ing temperature, reaching 13% at 4000 K. The parenthetical
the conventional (TST) and canonical variational transition state values in Table 2 also show that the rate constants obtained
theory (CVT) rate constants are the same to three significant from this PES are not very sensitive to the choice of coordinates.
figures at all temperatures, so below we quote only the CVT As discussed above, thé,5(s) curves obtained with either
results. Table 2 presents the rate constants for the HCN/HNC Cartesian or curvilinear coordinates are very close, and the
isomerization reaction calculated with various levels of ap- corresponding calculated rate constants differ by no more than
proximation. The tabulated values are those computed using3%. Finally, Table 2 shows that reaction-path tunneling is very
curvilinear internal coordinates, whereas #g/kcar ratio of important below 1000 K for this PES. For example, at 298 K
the rate constant computed using curvilinear coordinates to thatthe inclusion of tunneling along the MEP (CVT/MEPSAG vs
computed using Cartesian coordinates is given in parenthesesCVT) raises the PT2C rate constant by a factor of 5.2, whereas
For each temperature, the first line contains the harmonic results,additionally incorporating the curvature of the reaction path
whereas the values on the second line include the effects of(CVT/CD-SCSAG vs CVT) raises the PT2C rate constant by a
anharmonicity through the PT2C approach discussed above factor of 7.0, thereby yielding a more reliable estimate of the
From the CVT values, we find that neglecting anharmonicity effects of tunneling on the rate constant.

yields uniformly higher rate constants. Furthermore, at a given Table 3 compares CVT rate constants computed from
temperature the ratio of the harmonic to the anharmonic result vibrational partition functions obtained by direct summation over
is roughly the same whether reaction-path tunneling is included the anharmonic vibrational levels (eq 1, PT2C) or by the SPT
or excluded showing that the effect of neglecting anharmonicity approach (eq 2). (Because the transmission coefficients are
on the ground-state adiabatic potentil(s), is much less unaffected by the manner in which the vibrational partition
important than the effect on the vibrational levels that lead to function is calculated, a comparison of CVT/MEPSAG or CVT/
the vibrational partition functions. Because the CVT rate CD-SCSAG rate constants would exhibit identical behavior.)
constant depends on thetio of the vibrational partition function ~ These results show that there are negligible differences between
for the generalized transition state at the dynamic bottleneck to the results of these methods for temperatures below 1000 K.
that for HCN, some of the error introduced by neglecting Because both methods employ the same zero point energy, this
anharmonicity cancels out for this systéihus, the differences  result is not surprising. Above 1000 K, the difference in the

For this PES, the variational effect is very small. In fact,
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TABLE 4. HCN/HNC Isomerization Rate Constants for (curvilinear or Cartesian) for this system, but that, through a

Different Exponential Range Parameters partial cancellation of errors, neglecting anharmonicity leads
CVT/MEPSAG CVT/CD-SCSAG to rate constants that are about 4% larger at 298 K. We also

T(K) =14 =11 =14 =11 demonstrated that simple perturbation theory (SPIEpds to

rate constants that are very close to those obtained by an explicit

19 20 19 19 . . . .
200 LOL107" 6.73x 107" 4.06x 107 " 2.33x 107 summation over vibrational energy levels except at very high

9.55x 102° 6.38x 102° 3.85x 107 2.21x 10°%°

250 232x 104 224x 109 437x 104 4.06x 104 temperature. This is quite encouraging because the direct
221x 1074 214x 104 4.18x 10 3.88x 1074 summation over vibrational energy levels is impractical for

298 2.98x 1070 2.97x 107 4.02x 107 3.99x 1071° systems of more than four atoms. Applications of this approach
2.86x 1070 2.86x 1071% 3.86x 1077 3.84x 107 to other reactions of interest are currently underway in our

400 2.00x 104 2.00x10* 2.25x10* 2.25x10*
1.93x10* 1.93x10* 217x10* 217x10*

aUnits of rate constants are’s For each temperature, upper entry Acknowledgment. | thank C. R. Quade and A. B. McCoy
is harmonic, whereas lower entry is anharmonic (PT2C) result. for several helpful discussions. The calculations reported here
were carried out on the Miami University Department of
hemistry & Biochemistry’s UNIX workstation, and the
omputer time is greatly appreciated.

laboratory.

treatment of the excited levels by the two approaches yield SPT
rate constants that are higher than the PT2C ones by 2% at 150
K, 4% at 2400 K, and 9% at 4000 K. As discussed previotsly,
the SPT results are more accurate for this system at high
temperature because of errors in the perturbation theory
?stlgwc?:'es f(z;]th.e elne.rg|e.s ?;:thﬁpé%ly e?tglte(: V'b{?t'opalsgiles'anharmonicity coefficients and in the constant teEg,when
'}at tl Iont,h telnc US'?T n I'e di thparl-:CIIOI{l] unﬁ ion (_)]I | 2w; ~ wj or w; + wj & wy resonances occur in asymmetric top
of states that are not localized In the well significantly - ang linear systems. This material is available free of charge via
affects the value of the PT2C rate constant at 4000 K, so this .
. the Internet at http://pubs.acs.org.

value should not be taken seriousgly.
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