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A method for calculating anharmonic vibrational energy levels in asymmetric top and linear systems that is
based on second-order perturbation theory in curvilinear coordinates is extended to the bound generalized
normal modes at nonstationary points along a reaction path. Explicit formulas for the anharmonicity coefficients,
xij, and the constant term,E0, are presented, and the necessary modifications for resonance cases are considered.
The method is combined with variational transition state theory with semiclassical multidimensional tunneling
approximations to calculate thermal rate constants for the HCN/HNC isomerization reaction. Although the
results for this system are not very sensitive to the choice of coordinates, we find that the inclusion of
anharmonicity leads to a substantial improvement in the vibrational energy levels. We also present detailed
comparisons of rate constants computed with and without anharmonicity, with various approximations for
incorporating tunneling along the reaction path, and with a more practical approach to calculating the vibrational
partition functions needed for larger systems.

1. Introduction

For a given potential energy surface (PES), canonical
variational transition state theory (CVT)1-6 provides a practical
method for calculating reliable thermal rate constants for a
reacting system. Its application requires the evaluation of
partition functions both for the reactant(s) and at a series of
points along the reaction path, which we take here to be the
minimum energy path (MEP), that is, the path of steepest
descent in mass-scaled Cartesian coordinates starting from the
saddle point.3 The calculation of the partition functions is greatly
simplified by assuming that the translational, rotational, vibra-
tional, electronic, and reaction coordinate degrees of freedom
are separable, and that the translational and rotational contribu-
tions can be treated using classical mechanics and the rigid rotor
model.7 The remaining degrees of freedom are treated quantum
mechanically. In particular, the vibrational contribution to the
rate constant at a points along the MEP is given by the ratio of
the vibrational partition function ats to that for the reactant(s),
where the vibrational partition function,Qvib(T), at temperature
T for a nonlinear species withN atoms is defined as

Here En is the energy of a vibrational level (relative to the
bottom of the vibrational well) with a collection of quantum
numbers indicated byn, k is Boltzmann’s constant, and the
summation is carried out over the degrees of freedom corre-
sponding to the “bound mode” vibrations. For a reactant, these
3N - 6 degrees of freedom are the true bound vibrational modes
of the species, whereas for a point along the MEP, these 3N -
7 degrees of freedom are generalized normal modes representing
the “bound” internal motions of the reacting complex that are
locally orthogonal to the motion along the reaction path. (For a

linear species, 3N - 6 should be changed to 3N - 5.) Thus,
the energy levels of these modes directly affect the calculated
reaction rate constant through the partition function in eq 1,
whereas the zero point energy of these degrees of freedom
determines the vibrationally adiabatic ground-state potential
energy curve that is used to incorporate quantal effects (e.g.,
tunneling) into the description of the reaction coordinate degree
of freedom.3,8-11

Because the calculation of the generalized normal modes
requires that the reaction coordinate degree of freedom be
projected out of the vibrational space at nonstationary points,
the generalized normal-mode frequencies depend on the choice
of coordinate system.12-14 Rectilinear (e.g., Cartesian) coordi-
nates, which have generally been the standard choice for the
application of reaction-path methods to polyatomic systems,3,15-21

can lead to imaginary harmonic frequencies.12,13 However,
physically reasonable results are obtained when the generalized
normal modes are expressed in curvilinear coordinates,12,13,22

(e.g., bond stretches and angle bends). In addition, the widely
used harmonic approximation, which leads to very simple
formulas for the vibrational energy levels and partition functions,
can be innaccurate.5-7,23-27 To include anharmonicity along the
reaction path (as well as at stationary points) in a fashion that
is consistent with curvilinear coordinate generalized normal
modes, we herein make use of second-order perturbation theory
in curvilinear coordinates.28 This approach, which we denote
as PT2C and which has been shown to provide fairly accurate
vibrational energy levels in bound molecules,29-32 takes into
account both kinetic and potential anharmonic contributions.

Another consideration is that evaluatingQvib(T) by direct
summation over anharmonic energy levels, as implied in eq 1,
is not practical for systems containing more than a few atoms
because the number of terms becomes prohibitive asN increases.
In addition, the breakdown of perturbation theory for high-
energy states may be severe.5,24,26,33 To circumvent these
problems, Truhlar and this author proposed a method, called
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Qvib(T) ) ∑
n

exp(-En/kT) (1)
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simple perturbation theory (SPT),34 in which Qvib(T) is ap-
proximated by

where the ground-state energy,ε0, and the fundamental excita-
tion energies,{∆i, i ) 1, ..., 3N - 6}, are evaluated by second-
order perturbation theory in Cartesian coordinates (denoted
simply as PT2). Those authors showed that this approach worked
quite well in several cases of nonlinear systems containing from
two to six modes.5,34,35In addition, this author showed that SPT
is roughly as accurate as direct summation over PT2 energy
levels for the HCN molecule and at the saddle point for the
HCN/HNC isomerization reaction.7

In this paper, our preliminary investigation of the HCN/HNC
isomerization reaction7 is extended to the calculation of CVT
rate constants, both with and without semiclassical transmission
coefficients to account for reaction-coordinate tunneling. Below

we first compare harmonic results obtained with rectilinear
coordinates and with curvilinear coordinates. We then compare
rate constants obtained from eq 1 with harmonic energy levels
and with anharmonic levels. Finally, we compare rate constants
obtained by direct summation over anharmonic energy levels
and by SPT. All of the calculations reported herein were carried
out with the widely used PES of Murrell, Carter, and Halonen
(MCH).36 Although this is not an accurate PES (e.g., the
isomerization barrier of 12 168 cm-1 is too low, and there is
an anomalous local maximum along the reaction path on the
product side of the saddle point),37,38it is a global analytic PES
that describes the entire HCN/HNC isomerization process. Thus,
it should provide reasonable results for the rate constant
comparisons outlined above. Section 2 describes the second-
order perturbation theory calculation of the vibrational energy
levels in curvilinear coordinates (PT2C) along a reaction path
as well as for bound species, and the calculations for HCN and
HNC as well as at the saddle point for the isomerization reaction
are discussed in section 3. Selected details of the rate constant
calculations are given in section 4, and the results are presented
in section 5. Our conclusions are summarized in section 6.

2. Theory

Generalized Normal-Mode Analysis in Curvilinear Coordinates.Along a reaction path, the first derivatives of the potential
energy are nonzero except at stationary points. Thus, to carry out a generalized normal-mode analysis at an arbitrary point along the
reaction path, one must first project out from the second derivatives the first derivative contributions. This yields generalized vibrational
frequencies (ωi) as well as generalized normal modes (Qi) that are linear combinations of the curvilinear coordinates (θt):

These generalized vibrational frequencies and normal modes are determined in the “spectroscopists units” used below (wherein both
frequency and energy have units of cm-1) as follows. Starting from the standardG andF matrices of Wilson, Decius, and Cross,39

we defineG′ ) hG/4π2c andF′ ) F/hc. Then, following Jackels et al.,13 at a point along the reaction path we define the projected
force constant matrix

where, ifb is the gradient in curvilinear coordinates,p ) bbT/bTGb. The nonzero eigenvalues and corresponding eigenvectors of
the nonsymmetricalG′f ′P matrix are then obtained as discussed in Jackels et al.:13

The square root of the positive eigenvalueΩii is equal to the generalized normal-mode frequencyωi in cm-1, and theith column
of the Λ matrix is the corresponding unnormalized generalized normal mode. When normalized as outlined in Jackels et al.,13 we
obtain the normalized generalized normal mode coefficientsLti, which have units of cm1/2 if θt is a stretch and cm-1/2 if θt is a bend.

Vibrational Energy Levels. Both potential and kinetic anharmonic contributions must be considered in order to calculate anharmonic
vibrational levels of anonrotatingsystem within the space of the bound curvilinear generalized normal modes.28,30 To see this, we
express the pure vibrational Hamiltonian in terms of the generalized curvilinear normal coordinates,Qi, and the conjugate momenta,
Pi, as30,40

where, within the context of second-order perturbation theory discussed below,V′ is a constant depending on the geometry and is
discussed at the end of this section,

(All summations in this paper are unrestricted unless otherwise indicated.) Heregij is an element of theG′ matrix transformed to

Qvib(T) )
e-ε0/kT

∏
i)1

3N-6

(1 - e-∆i/kT)

(2)

θt ) ∑
i

Lti Qi (3)

f ′P ) [1 - Gp]T F′[1 - Gp] (4)

G′f ′PΛ ) ΛΩ (5)

H )
1

2
∑
i,j

Pi µij Pj + V + V′ (6)

µij ) δij + ∑
k

(∂gij

∂Qk
)Qk + ∑

k,l
( ∂

2gij

∂Qk∂Ql
)QkQl (7)

V )
1

2
∑

k

ωk
2Qk

2 + ∑
iejek

fijk Qi Qj Qk + ∑
iejekel

fijkl Qi Qj Qk Ql (8)
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curvilinear normal coordinates so that

while fijk and fijkl are third- and fourth-order force constants along the normal modes, that is

whereNijk andNijkl are integers that depend on the number of identical subscripts.28

To use second-order perturbation theory to obtain anharmonic vibrational energy levels, we write

where, for the specific case of anasymmetric top28

The operatorH(0) is the standard Hamiltonian for uncoupled harmonic oscillators; its eigenvalues and eigenfunctions are

whereψni(Qi) is the one-dimensional harmonic oscillator eigenfunction andn is the collection ofni values.
From nondegenerate second-order perturbation theory, the vibrational energy of leveln is given by

where|n〉 represents|Ψn
(0)〉. Once the matrix elements have been evaluated,41 En can be written as

where, using the notation

we find that28

(∂gij

∂Qk
) ) ∑

r,s,t
(∂G′rs

∂θt
)Lir

-1Ljs
-1Ltk (9)

( ∂
2gij

∂Qk∂Ql
) )

1

2
∑

r,s,t,u
( ∂

2G′rs

∂θt∂θu
)Lir

-1Ljs
-1LtkLul (10)

fijk ) (Nijk)-1∑
r,s,t

( ∂
3V

∂θr ∂θs∂θt
)Lri LsjLtk (11)

fijkl ) (Nijkl)
-1 ∑

r,s,t,u
( ∂

4V

∂θr ∂θs∂θt∂θu
)Lri Lsj Ltk Lul (12)

H ) H(0) + λH(1) + λ2H(2) + V′ (13)

H(0) )
1

2
∑

i

Pi
2 +

1

2
∑

i

ωi
2Qi

2 (14)

H(1) )
1

2
∑
i,j,k

(∂gij

∂Qk
)Qk Pi Pj + ∑

iejek

fijk Qi Qj Qk (15)

H(2) )
1

2
∑
i,j,k,l

( ∂
2gij

∂Qk∂Ql
)Qk Ql Pi Pj + ∑

iejekel

fijkl Qi Qj Qk Ql (16)

En
(0) ) ∑

i

ωi(ni +
1

2) andΨn
(0) ) ∏

i

ψni
(Qi) (17)

En ) En
(0) + 〈n|H(1) + H(2)|n〉 + ∑

m*n

〈n|H(1)|m〉〈m|H(1)|n〉

En
(0) - Em

(0)
(18)

En ) E0 + ∑
i

ωi (ni +
1

2) + ∑
i,j

xij (ni +
1

2)(nj +
1

2) (19)

gij ,k ≡ ( ∂gij

∂Qk
) andgij ,kl ≡ ( ∂

2gij

∂Qk∂Ql
) (20)
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with Dijk ) (ωi + ωj + ωk)(ωi - ωj + ωk)(ωi + ωj - ωk)(ωi - ωj - ωk). The constant term,E0, which is of no importance in
spectroscopy and was not considered by Quade,28 is necessary for the absolute values of the energy levels, and hence, for the
partition functions. It is given by

To use second-order perturbation theory to obtain anharmonic vibrational energy levels for alinear species, we again write

where, withi, j, k, andr referring to nondegenerate modes ands andt each referring to a pair of doubly degenerate modes, the terms
that contribute to the vibrational energy of a linear species are28

Here a and b can refer to either nondegenerate or degenerate modes; for a degenerate pair of modes, both polar, (Qs, øs), and
Cartesian, (Qs

c, Qs
s), representations have been used, where

The operatorH(0) is again the standard Hamiltonian for uncoupled harmonic oscillators; its eigenvalues and eigenfunctions are

whereda ) 1 for a nondegenerate mode andda ) 2 for a doubly degenerate mode,ψni(Qi) is a one-dimensional harmonic oscillator
eigenfunction, andψnsls(Qs, øs) is the polar representation of a two-dimensional isotropic oscillator;n is then the collection ofni, ns,
and ls values.

xii )
1

4
gii ,ii +

3

2
fiiii ωi

-2 -
3

16
gii ,i

2 -
15

4
f iii

2 ωi
-4 -

3

4
gii ,i fiii ωi

-2 - ∑
j*i

(4ωi
2 - ωj

2)-1[ 1

16
gii ,j

2 ωi
2ωj

-2(8ωi
2 - 3ωj

2) +
1

2
gii ,j gij ,iωi

2 -

1

4
gij ,i

2 ωj
2 +

1

4
f iij

2 ωi
-2ωj

-2(8ωi
2 - 3ωj

2) +
1

4
gii ,j fiij ωj

-2(8ωi
2 - ωj

2) - gij ,i fiij] (21)

xij )
1

2
gii ,jjωiωj

-1 +
1

2
fiijj ωi

-1ωj
-1 -

1

4
gii ,i gjj ,iωi

-1ωj - 3fiii fijj ωi
-3ωj

-1 -
1

2
gii ,i fijj ωi

-1ωj
-1 -

3

2
gjj ,i fiii ωi

-3ωj -

1

8
∑
k*i,j

[gii ,k gjj ,kωiωjωk
-2 + 4fiik fjjk(ωiωjωk

2)-1 + 4gii ,k fjjkωiωj
-1ωk

-2] - 2(4ωi
2 - ωj

2)-1[14 gii ,j
2 ωi

3ωj
-1 + gij ,i

2 ωiωj -
1

2
gii ,j gij ,iωiωj +

f iij
2 ωi

-1ωj
-1 - gii ,j fiij ωiωj

-1 + gij ,i fiij ωi
-1ωj] -

1

4
∑
k*i,j

Dijk
-1{[gij ,k

2 ωiωj + gjk,i
2 ωi

-1ωjωk
2 + gik,j

2 ωiωj
-1ωk

2](ωk
2 - ωi

2 - ωj
2) +

2gij ,k gjk,iωiωj(ωi
2 - ωj

2 - ωk
2) + 2gij ,k gik,jωiωj(ωj

2 - ωi
2 - ωk

2) + 4gjk,i gik,jωiωjωk
2 + f ijk

2 ωi
-1ωj

-1(ωk
2 - ωi

2 - ωj
2) -

4gij ,k fijkωiωj - 2gjk,i fijkωi
-1ωj(ωj

2 - ωi
2 - ωk

2) - 2gik,j fijkωiωj
-1(ωi

2 - ωj
2 - ωk

2)} (22)

E0 ) ∑
i

[-
3

16
gii ,ii +

3

8
fiiii ωi

-2 -
3

64
gii ,i

2 -
7

16
f iii

2 ωi
-4 +

1

16
gii ,i fiii ωi

-2] + ∑
j*i

(4ωi
2 - ωj

2)-1[ 3

64
gii ,j

2 ωi
2 -

3

8
gii ,j gij ,iωi

2 +

3

16
gij ,i

2 ωj
2 +

3

16
f iij

2 ωi
-2 -

3

16
gii ,j fiij +

3

4
gij ,i fiij] -

1

16
∑

i*j*k

Dijk
-1[2gij ,k

2 ωi
2ωj

2 + gij ,k gjk,iωj
2(ωj

2 - ωi
2 - ωk

2) + gij ,k gik,jωi
2(ωi

2 -

ωj
2 - ωk

2)] -
1

4
∑

i<j<k

Dijk
-1[f ijk

2 - gij ,k fijk(ωk
2 - ωi

2 - ωj
2) - gik,j fijk(ωj

2 - ωi
2 - ωk

2) - gjk,i fijk(ωi
2 - ωj

2 - ωk
2)] (23)

H ) H(0) + λH(1) + λ2H(2) + V′ (24)

H(0) )
1

2
∑

r

(Pr
2 + ωr

2Qr
2) +

1

2
∑

s

(Ps
2 + Qs

-2Pøs

2 + ωs
2Qs

2) (25)

H(1) )
1

2
∑
r,s,t

gst,r Qr (Ps
cPt

c + Ps
sPt

s) +
1

2
∑
r,s,t

gsr,t Pr (Qt
cPs

c + Qt
sPs

s) + ∑
iejek

fijk Qi Qj Qk + ∑
r,set

frst (Qs
cQt

c + Qs
sQt

s)Qr (26)

H(2) )
1

2
∑

s

(gss,ssQs
2Ps

2 + Ass,ss
zz Pøs

2 ) +
1

2
∑
r,s

grr ,ssQs
2Pr

2 +
1

2
∑
r,s

gss,rr Qr
2(Ps

2 + Qs
-2Pøs

2 ) +
1

2
∑
s*t

gss,tt Qt
2(Ps

2 + Qs
-2Pøs

2 ) +

∑
aeb

faabbQa
2Qb

2 (27)

Qs
c ) cosøsQs, Qs

s ) sin øs Qs, Ps
c ) cosøsPs - sin øsQs

-1Pøs
, andPs

s ) sin øsPs + cosøsQs
-1Pøs

(28)

En
(0) ) ∑

a

ωa(na +
da

2) andΨn
(0) ) ∏

i

ψni
(Qi) ∏

s

ψnsls
(Qs, øs) (29)
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From degenerate second-order perturbation theory, the vibrational energy of leveln is again given by42

where|n〉 represents|Ψn
(0)〉 and where at least one of theni or ns values differ in|n〉 and|m〉. (In principle,En should be determined

by diagonalizing an energy matrix whose elements are given by the formula above, but with|n〉 replaced by|n′〉, wherel′s, l′t ) ls,
lt or l′s, l′t ) ls ( 2, lt - 2. However, the latter case is only important for thel-doubling energy,43 which has been omitted here and
is unimportant for the zero point energy and the fundamentals. Thus, the equation above is written for the diagonal case only.)
Matrix elements of the operators appearing in the above equation have been obtained in Hermitian form by multiplying the matrix
representations of the basic operators given in the literature.44-46 From these,En can be written as

where28

En ) En
(0) + 〈n|H(1) + H(2)|n〉 + ∑

m*n

〈n|H(1)|m〉〈m|H(1)|n〉

En
(0) - Em

(0)
(30)

En ) E0 + ∑
a

ωa(na +
da

2) + ∑
a,b

xab(na +
da

2)(nb +
db

2) + ∑
s,t

xls lt
ls lt (31)

xii )
3

2
fiiii ωi

-2 -
15

4
f iii

2 ωi
-4 - ∑

j*i

(4ωi
2 - ωj

2)-1[14 f iij
2 ωi

-2ωj
-2(8ωi

2 - 3ωj
2)] (32)

xij )
1

2
fiijj ωi

-1ωj
-1 - 3fiii fijj ωi

-3ωj
-1 - (4ωi

2 - ωj
2)-1[2f iij

2 ωi
-1ωj

-1] - ∑
k*i,j

{1

2
fiik fjjk(ωiωjωk

2)-1 +

Dijk
-1[14 f ijk

2 ωi
-1ωj

-1(ωk
2 - ωi

2 - ωj
2)]} (33)

xss)
1

4
gss,ss+

3

2
fssssωs

-2 - ∑
r

(4ωs
2 - ωr

2)-1[ 1

16
gss,r

2 ωr
-2ωs

2(8ωs
2 - 3ωr

2) -
1

4
gsr,s

2 ωr
2 +

1

2
gss,r gsr,sωs

2 +
1

4
f rss

2 ωr
-2ωs

-2(8ωs
2 -

3ωr
2) +

1

4
gss,r frssωr

-2(8ωs
2 - ωr

2) - gsr,s frss] (34)

xrs )
1

4
grr ,ssωrωs

-1 +
1

4
gss,rrωr

-1ωs +
1

2
frrssωr

-1ωs
-1 -

3

2
frrr frssωr

-3ωs
-1 -

3

4
gss,r frrr ωr

-3ωs-
1

4
∑
k*r

[2frrk fkss(ωrωk
2ωs)

-1 +

gss,k frrkωr
-1ωk

-2ωs] - (4ωs
2 - ωr

2)-1[14 gss,r
2 ωr

-1ωs
3 + gsr,s

2 ωrωs -
1

2
gss,r gsr,sωrωs + f rss

2 ωr
-1ωs

-1 - gss,r frssωr
-1ωs +

gsr,s frssωrωs
-1] - ∑

t*s

Drst
-1{1

4
[gsr,t

2 ωrωs + gst,r
2 ωr

-1ωsωt
2 + gtr,s

2 ωrωs
-1ωt

2](ωt
2 - ωr

2 - ωs
2) +

1

2
gsr,t gtr,sωrωs(ωs

2 - ωr
2 - ωt

2) +

1

2
gst,r gsr,tωrωs(ωr

2 - ωs
2 - ωt

2) + gst,r gtr,sωrωsωt
2 +

1

4
f rst

2 ωr
-1ωs

-1(ωt
2 - ωr

2 - ωs
2) - gsr,t frstωrωs -

1

2
gst,r frstωr

-1ωs(ωs
2 - ωr

2 -

ωt
2) -

1

2
gtr,s frstωrωs

-1(ωr
2 - ωs

2 - ωt
2)} (35)

xst )
1

2
gss,ttωsωt

-1 +
1

2
fssttωs

-1ωt
-1 -

1

2
∑

r
[14 gss,r gtt,rωr

-2ωsωt + frss frtt(ωr
2ωsωt)

-1 + gtt,r frssωr
-2ωs

-1ωt)] -

∑
r

Drst
-1{[14 gsr,t

2 ωr
2ωsωt

-1 +
1

8
gst,r

2 ωsωt](ωr
2 - ωs

2 - ωt
2) +

1

2
gsr,t gtr,sωr

2ωsωt +
1

4
gst,r gsr,tωsωt(ωt

2 - ωr
2 - ωs

2) +

1

4
gst,r gtr,sωsωt(ωs

2 - ωr
2 - ωt

2) +
1

8
f rst

2 ωs
-1ωt

-1(ωr
2 - ωs

2 - ωt
2) -

1

4
gsr,t frstωsωt

-1(ωs
2 - ωr

2 - ωt
2) -

1

2
gst,r frstωsωt -

1

4
gtr,s frstωs

-1ωt(ωt
2 - ωr

2 - ωs
2)} (36)

xls ls
) -

1

4
gss,ss-

1

2
fssssωs

-2 - ∑
r

(4ωs
2 - ωr

2)-1[ 1

16
gss,r

2 ωs
2 +

1

4
gsr,s

2 ωr
2 -

1

2
gss,r gsr,sωs

2 +
1

4
f rss

2 ωs
-2 -

1

4
gss,r frss + gsr,s frss] (37)

xls lt
) ∑

r

Drst
-1[12 gsr,t

2 ωr
2ωs

2 +
1

4
gst,r

2 ωs
2ωt

2 +
1

4
gsr,t gtr,sωr

2(ωr
2 - ωs

2 - ωt
2) +

1

4
gst,r gsr,tωs

2(ωs
2 - ωr

2 - ωt
2) +

1

4
gst,r gtr,sωt

2(ωt
2 - ωr

2 - ωs
2) +

1

4
f rst

2 -
1

4
gsr,t frst(ωt

2 - ωr
2 - ωs

2) -
1

4
gst,r frst(ωr

2 - ωs
2 - ωt

2) -
1

4
gtr,s frst(ωs

2 - ωr
2 - ωt

2)] (38)
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Note that in applying these equations, (xrs + xsr) should be replaced by 2xrs.47

The V′ term in the Hamiltonian (cf. eqs 13 and 24) arises from the noncommutativity of the position and momentum operators;
it is evaluated as follows. For a nonlinear molecule, it is given (in cm-1) by30,48

whereΓ is the ratio of the determinants of the moment of inertia tensor andG, Γ ) |I |/|G|. For a linear bound ABC system, the
singularities inV′ can be removed by a change of variables;30 the result is

wherer1, r2 are the AB and BC distances, respectively, andGbb is the bend-bend element of theG matrix. Along the reaction path,
the expression forV′ must be restricted to theboundcurvilinear normal coordinatesQi

where theg matrix is obtained by transforming theG′ matrix to normal coordinates

and whereγ ) |I |/|g|. This expression forV′ is efficiently evaluated numerically using finite-difference methods for the derivatives.
Anharmonic Resonance.Along a reaction path, the generalized frequencies change continuously. Thus, at some point on the

path, it is possible that 2ωi ≈ ωj for a pair of frequencies, or thatωi + ωj ≈ ωk for a triplet of frequencies. (Of course, the same
situation arises in certain bound molecules.49-51) In such resonance situations, the accidental near degeneracy of two or more
unperturbed (harmonic) vibrational energy levels relative to the interaction force constant that couples them can cause a breakdown
of perturbation theory, as some terms in eqs 21-23 and eqs 32-39 may blow up. (We defineiij - or ijk-type interactions to be
resonant if the|fiij /[ωiωj

1/2(2ωi - ωj)]| ratio or the|fijk /[(ωiωjωk)1/2(ωi + ωj - ωk)]| ratio, respectively, exceeds a minimum value,
p. A value forp of 0.20 has been found to distinguish between resonant and nonresonant interactions.5,6,26) In these cases, one first
removes the resonant contributions49,50 from the energy levels of asymmetric top or linear systems by making the replacements in
the anharmonicity coefficients and inE0 that are given by eqs S44 to S74 in the Supporting Information. These substitutions yield
“deperturbed” vibrational energy levels.52 If desired, the resonant levels can be improved by including the coupling between the
degenerate levels directly. However, this has been shown to have little effect on the resulting vibrational partition function26 and
was not done here.

3. Vibrational Energy Levels

Along the reaction path for the HCN/HNC isomerization, the
system is described by three internal coordinates, two bond
stretches and a nonlinear bend, whereas for HCN and HNC,
the system is described by four internal coordinates, two bond
stretches and two linear bends. All of the internal coordinates
were expressed in difference Cartesians as discussed in Jackels
et al.,13 except the linear bending coordinates were defined as
the arcsine of the expressions given in eqs 34a and b of that
work so that these coordinates would be true angles measured
in radians. TheG matrix was then constructed as in Jackels et
al.,13 but the F matrix was evaluated by direct numerical
differentiation in internal coordinates of the analytic gradient
in internals, as were the higher-order derivatives of the potential

energy. Direct numerical differentiation in internals was also
used for the derivatives of theG matrix.

For HCN and HNC, the normal-mode analysis yields four
bound modes, two stretches and a doubly degenerate bend. Each
vibrational state of these linear species can thus be labeled by
four approximate quantum numbers and denoted asV1V2

lV3,
whereV1, V2, and V3 are associated with the CN stretch, the
degenerate bend, and the CH or NH stretch, respectively, and
where, for givenV2, the vibrational angular momentum quantum
numberl can take on the valuesV2, V2 - 2, ...,-V2 + 2, -V2.7

For a point on the MEP, however, the generalized normal-mode
analysis discussed above yields two bound modes that mainly
involve the two stretching motions; the bending motion roughly
corresponds to motion along the reaction path. Each generalized
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bound vibrational state is then labeled by just two quantum
numbers and denoted asV1V2, whereV1 and V2 are associated
with the CN stretch and the stretch of the hydrogen relative to
the CN bond, respectively.

Considering the potential effects of resonance for this system,
we found that for all cubic interactions, the|fiij /[ωiωj

1/2(2ωi -
ωj)]| ratio is no larger than 0.08, except for thef113 interaction
in HNC, for which it is 0.22. Because removing thef113

contribution from the vibrational energy affects only the excited
states,35 treating this interaction as resonant affects only the rate
constant for the reverse reaction. In fact, numerical tests
demonstrate that removing this interaction raises the 0001 HNC
fundamental by 4.0 cm-1 and changes the reverse rate constants
in at most the fourth significant figure for the temperatures
considered here (200-4000 K). Choosing the value ofp to be
0.07 also treats thef122 interaction along the MEP as resonant,
which affects the generalized excited states and vibrational
partition function for the generalized transition state. However,
removing this interaction does not change the rate constants to
three significant figures. Thus, all of the results quoted in this
paper include all cubic interactions, that is, no interactions have
been removed.

Table 1 lists the accurate zero point energy and fundamentals
for HCN, HNC, and at the saddle point for the HCN/HNC
isomerization on the MCH surface.36 As discussed previously,7

these were obtained for HCN and HNC from discrete variable
calculations with the DVR3D suite of programs,53 whereas those
for the saddle point were obtained from the vibrational SCF-CI
method with the POLYMODE program.54 These values agree
quite well with those computed by perturbation theory in
rectilinear coordinates (PT2)7 and in curvilinear coordinates
(PT2C, present work). In fact, the average absolute error in the
zero point energies is only 1.9 cm-1 for both approximate
approaches, whereas the average absolute errors in the funda-
mentals is 4.8 cm-1 for PT2 and 2.4 cm-1 for PT2C. (It should
be noted that the present PT2C results for HCN are in almost
exact agreement with those reported in ref 30. In addition, as
noted in that work, if the same Hamiltonian is used in both
cases, rectilinear and curvilinear coordinates lead to identical
perturbation theory energy levels when no resonances are
removed,30 as is the case here. The differences between the
present PT2 and PT2C results are likely due to the neglect of
small vibrational angular momentum terms in the usual ap-
plication of perturbation theory to the Hamiltonian in rectilinear
coordinates.49,50) In contrast, the harmonic approximation leads
to fairly large errors: on average, the zero point energies are

too high by 36 cm-1 and the fundamentals are too high by 73
cm-1, with the errors in the fundamentals involving the hydrogen
stretch being particularly large. Thus, we would expect the
vibrational partition functions (and, hence, the rate constants)
derived from the perturbation theory levels to be fairly accurate,
whereas we expect the error in the vibrational partition functions
obtained from the harmonic levels to be significant, as discussed
before.7

4. Rate Constant Calculations

Figure 1 shows the classical potential energy curve (VMEP)
and two ground-state vibrationally adiabatic potential energy
curves (Va

G) along the reaction path. The reaction coordinate,
s, is defined as the signed distance along the MEP from the
saddle point (s ) 0) to HCN (s < 0) and HNC (s > 0) through
mass-scaled Cartesian coordinates, where the coordinates are
scaled to a reduced mass of 1 amu.2 The solid curve,VMEP(s),
is the Born-Oppenheimer potential energy along the reaction
path, whereas the two upper curves,Va

G(s), are sums ofVMEP-
(s) and the total zero point energy for the bound vibrational
degrees of freedom orthogonal to the MEP ats. For the dashed
(upper) curve, the zero point energy was computed harmonically,
whereas for the dotted (lower) curve it was calculated by the
PT2C approach discussed above. We note in passing that
projecting out the reaction coordinate direction in rectilinear
coordinates and using the PT2 approach in place of PT2C would
not change the energies of these curves by more than 0.02 kcal/
mol. We also note that the curves in Figure 1 have been obtained
from the actual MCH potential energy function only up tos )
0.75 bohr. Fors > 0.75 bohr, the actual MCH potential energy
function exhibits a local minimum along the reaction path. Thus,
we extrapolated the energy curves fors > 0.75 bohr to their
HNC limits by simple exponential functions, as discussed
elsewhere.2 Fitting the exponentials to the actual energy curves
at s ) 0.75 bohr yields an exponential range parameter ofR )
1.1 bohr-1. Because this value ofR produced energy curves
that appeared to decay too slowly, the value ofR was arbitrarily
changed to 1.4 bohr-1 to better represent the true situation in
this system. To examine the sensitivity of the results on the
choice ofR, below we compare rate constants obtained withR
) 1.4 bohr-1 and withR ) 1.1 bohr-1. When the curvature of
the MEP is neglected, theVa

G(s) curve provides an effective
barrier for reaction path tunneling.3,8,9Thus, we find below that,

TABLE 1: Zero Point Energy a and Fundamentalsb (in cm-1)
for HCN, HNC, and at the Saddle Point

level harmonic PT2 PT2C accurate

HCN
0000 3520.88 3480.83 3485.26 3483.24
1000 2127.46 2097.26 2097.38 2096.89
0110 731.71 715.41 714.93 719.95
0001 3450.89 3308.67 3315.81 3318.56

HNC
0000 3422.33 3377.34 3383.75 3380.21
1000 2060.88 2029.25 2029.52 2029.88
0110 494.05 481.56 482.59 483.67
0001 3795.68 3620.09 3631.54 3632.45

saddle point
00 2676.32 2647.60 2647.40 2647.25
10 2223.53 2157.66 2157.50 2149.70
01 3129.11 3002.08 3001.76 3001.29

a Measured from the bottom of the corresponding vibrational well.
b Measured relative to the zero point energy. Figure 1. Calculated classical potential energy,VMEP (solid curve),

and ground-state vibrationally adiabatic potential energy,Va
G (dashed

curve, harmonic; dotted curve, anharmonic), as functions of the reaction
coordinate,s.
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at low temperature, the choice ofR has a large effect on rate
constants that include tunneling. However, given the closeness
of theVa

G(s) curves for which the zero point energy is computed
harmonically or by the PT2C approach, we expect that the
inclusion of anharmonicity will only have a mild effect on the
rate constant, as shown below.

CVT rate constants for the HCN/HNC isomerization reaction
were obtained exactly as described previously.2 For results that
are converged to at least three significant figures, the MEP was
computed by the Euler single-step method3,55 with a step size
between gradient calculations of 0.0001 bohr and a distance
between generalized normal mode calculations of 0.005 bohr.
The generalized transition state was optimized for each tem-
perature by finding the maximum of the generalized free energy
of activation with respect to the reaction coordinate. For
comparison, we also calculated conventional transition state
theory (TST) rate constants, which result from locating the
transition state at the saddle point (s ) 0.0). The vibrational
partition function at temperatureT was computed either by direct
summation over the vibrational levels (eq 1) up to the lowest
dissociation energy of the system (45 676 cm-1) or by the SPT
approach (eq 2). Quantum effects along the reaction coordinate
degree of freedom, which account for hydrogen tunneling, were
included by multiplying the CVT rate constant by one of two
semiclassical adiabatic ground-state (SAG) transmission coef-
ficients.1,3,9The MEPSAG transmission coefficient3,8-10 is based
on tunneling along the MEP, whereas the centrifugal-dominant
small-curvature (CD-SCSAG) transmission coefficient11,56 in-
cludes the curvature-coupling of the reaction path to the
generalized normal modes of the transition state. The CD-
SCSAG transmission coefficient thus allows for corner-cutting
during tunneling and is more accurate.57,58

5. Rate Constant Results

For this PES, the variational effect is very small. In fact,
although the location of the “dynamic bottleneck”, that is, the
value ofs at which the generalized free energy of activation is
a maximum, increases toward the product with increasing
temperature, it remains less than 0.025 bohr up to the highest
temperature considered in this study (4000 K). Because of this,
the conventional (TST) and canonical variational transition state
theory (CVT) rate constants are the same to three significant
figures at all temperatures, so below we quote only the CVT
results. Table 2 presents the rate constants for the HCN/HNC
isomerization reaction calculated with various levels of ap-
proximation. The tabulated values are those computed using
curvilinear internal coordinates, whereas thekcurv/kCart ratio of
the rate constant computed using curvilinear coordinates to that
computed using Cartesian coordinates is given in parentheses.
For each temperature, the first line contains the harmonic results,
whereas the values on the second line include the effects of
anharmonicity through the PT2C approach discussed above.
From the CVT values, we find that neglecting anharmonicity
yields uniformly higher rate constants. Furthermore, at a given
temperature the ratio of the harmonic to the anharmonic result
is roughly the same whether reaction-path tunneling is included
or excluded showing that the effect of neglecting anharmonicity
on the ground-state adiabatic potential,Va

G(s), is much less
important than the effect on the vibrational levels that lead to
the vibrational partition functions. Because the CVT rate
constant depends on theratio of the vibrational partition function
for the generalized transition state at the dynamic bottleneck to
that for HCN, some of the error introduced by neglecting
anharmonicity cancels out for this system.7 Thus, the differences

in the vibrational zero point energies lead to a harmonic rate
constant that is about 5% higher than the corresponding
anharmonic value at 200 K. This effect decreases to around 4%
at 298 K, but differences in the excited vibrational levels cause
a further increase in the difference between the harmonic and
anharmonic results that becomes more pronounced with increas-
ing temperature, reaching 13% at 4000 K. The parenthetical
values in Table 2 also show that the rate constants obtained
from this PES are not very sensitive to the choice of coordinates.
As discussed above, theVa

G(s) curves obtained with either
Cartesian or curvilinear coordinates are very close, and the
corresponding calculated rate constants differ by no more than
3%. Finally, Table 2 shows that reaction-path tunneling is very
important below 1000 K for this PES. For example, at 298 K
the inclusion of tunneling along the MEP (CVT/MEPSAG vs
CVT) raises the PT2C rate constant by a factor of 5.2, whereas
additionally incorporating the curvature of the reaction path
(CVT/CD-SCSAG vs CVT) raises the PT2C rate constant by a
factor of 7.0, thereby yielding a more reliable estimate of the
effects of tunneling on the rate constant.

Table 3 compares CVT rate constants computed from
vibrational partition functions obtained by direct summation over
the anharmonic vibrational levels (eq 1, PT2C) or by the SPT
approach (eq 2). (Because the transmission coefficients are
unaffected by the manner in which the vibrational partition
function is calculated, a comparison of CVT/MEPSAG or CVT/
CD-SCSAG rate constants would exhibit identical behavior.)
These results show that there are negligible differences between
the results of these methods for temperatures below 1000 K.
Because both methods employ the same zero point energy, this
result is not surprising. Above 1000 K, the difference in the

TABLE 2: Calculated Rate Constants for the HCN/HNC
Isomerization Reactiona

T (K) CVT CVT/MEPSAG CVT/CD-SCSAG

200 7.69× 10-23 (1.00) 1.01× 10-19 (0.98) 4.06× 10-19 (0.98)
7.32× 10-23 (1.03) 9.55× 10-20 (1.01) 3.85× 10-19 (1.01)

250 1.25× 10-15 (1.00) 2.32× 10-14 (0.99) 4.37× 10-14 (0.99)
1.20× 10-15 (1.03) 2.21× 10-14 (1.02) 4.18× 10-14 (1.01)

298 5.74× 10-11 (1.00) 2.98× 10-10 (1.00) 4.02× 10-10 (0.99)
5.53× 10-11 (1.02) 2.86× 10-10 (1.02) 3.86× 10-10 (1.02)

400 9.25× 10-5 (1.00) 2.00× 10-4 (1.00) 2.25× 10-4 (1.00)
8.94× 10-5 (1.02) 1.93× 10-4 (1.01) 2.17× 10-4 (1.01)

600 1.06× 102 (1.00) 1.45× 102 (1.00) 1.52× 102 (1.00)
1.03× 102 (1.01) 1.40× 102 (1.01) 1.47× 102 (1.01)

1000 7.37× 106 (1.00) 8.22× 106 (1.00) 8.34× 106 (1.00)
7.08× 106 (1.00) 7.89× 106 (1.00) 8.00× 106 (1.00)

1500 1.86× 109 (1.00) 1.95× 109 (1.00) 1.96× 109 (1.00)
1.77× 109 (1.00) 1.86× 109 (1.00) 1.87× 109 (1.00)

2400 1.11× 1011 (1.00) 1.13× 1011 (1.00) 1.13× 1011 (1.00)
1.03× 1011 (0.99) 1.05× 1011 (0.99) 1.05× 1011 (0.99)

4000 1.55× 1012 (1.00) 1.55× 1012 (1.00) 1.56× 1012 (1.00)
1.37× 1012 (0.97) 1.38× 1012 (0.97) 1.38× 1012 (0.97)

a Units are s-1. For each temperature, upper entry is harmonic,
whereas lower entry is anharmonic result. Thekcurv/kCart or kPT2C/kPT2

ratio is given in parentheses.

TABLE 3: CVT Rate Constants (in s-1) for the HCN/HNC
Isomerization Reaction

T (K) PT2C SPT

200 7.32× 10-23 7.32× 10-23

250 1.20× 10-15 1.20× 10-15

298 5.53× 10-11 5.53× 10-11

400 8.94× 10-5 8.94× 10-5

600 1.03× 102 1.03× 102

1000 7.08× 106 7.13× 106

1500 1.77× 109 1.80× 109

2400 1.03× 1011 1.07× 1011

4000 1.37× 1012 1.50× 1012
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treatment of the excited levels by the two approaches yield SPT
rate constants that are higher than the PT2C ones by 2% at 1500
K, 4% at 2400 K, and 9% at 4000 K. As discussed previously,7

the SPT results are more accurate for this system at high
temperature because of errors in the perturbation theory
estimates for the energies of the highly excited vibrational states.
In addition, the inclusion in the PT2C partition function for HCN
of states that are not localized in the HCN well significantly
affects the value of the PT2C rate constant at 4000 K, so this
value should not be taken seriously.7

At low temperature, the transmission coefficients are sensitive
to the extrapolation used to the product (HNC) minimum. In
Table 4, we compare CVT/MEPSAG and CVT/CD-SCSAG rate
constants calculated with two different values of the exponential
range parameter,R, used to extrapolate froms ) 0.75 bohr to
the HNC minimum, as discussed in section 4. The results
demonstrate that for room temperature and above, the transmis-
sion coefficients are not sensitive to the choice ofR. However,
R ) 1.4 bohr-1 produces a thinner adiabatic barrier thanR )
1.1 bohr-1 does, leading to transmission coefficients that are
50% (CVT/MEPSAG) and 74% (CVT/CD-SCSAG) higher at
200 K in both harmonic and anharmonic cases; at 250 K, the
corresponding differences are 4% and 8%, respectively. (The
CD-SCSAG rate constants are more sensitive toR because the
effective reduced mass that accounts for reaction-coordinate
curvature11,56 is also modeled by an exponential extrapolation
for s > 0.75 bohr.2) Thus, the anomalous local minimum in the
MEP on the product side of the MCH PES that necessitates the
use of an exponential extrapolation introduces some uncertainty
in the rate constants that incorporate reaction-path tunneling,
but only at very low temperatures.

6. Conclusions

In this work, we have presented a method for the calculation
of anharmonic vibrational energy levels for the bound general-
ized normal modes along a reaction path that is based on second-
order perturbation theory in curvilinear internal coordinates.
Both asymmetric top and linear species have been considered,
and the modifications needed when resonance occurs have been
discussed; the details of these changes are given in the
Supporting Information. For HCN, HNC, and the saddle point
of the HCN/HNC isomerization reaction on the potential energy
surface developed by Murrell, Carter, and Halonen,36 this
method yields an average absolute error in the zero point energy
and fundamentals of only 2 cm-1, compared to 63 cm-1 with
the harmonic approximation. Canonical variational transition
state theory (CVT) rate constants for the HCN/HNC isomer-
ization reaction have been computed from generalized vibra-
tional energy levels along the reaction path. We found that the
results are not very sensitive to the choice of coordinates

(curvilinear or Cartesian) for this system, but that, through a
partial cancellation of errors, neglecting anharmonicity leads
to rate constants that are about 4% larger at 298 K. We also
demonstrated that simple perturbation theory (SPT)34 leads to
rate constants that are very close to those obtained by an explicit
summation over vibrational energy levels except at very high
temperature. This is quite encouraging because the direct
summation over vibrational energy levels is impractical for
systems of more than four atoms. Applications of this approach
to other reactions of interest are currently underway in our
laboratory.
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Supporting Information Available: Equations S44-S74
give the modifications that are required in the perturbation theory
anharmonicity coefficients and in the constant term,E0, when
2ωi ≈ ωj or ωi + ωj ≈ ωk resonances occur in asymmetric top
and linear systems. This material is available free of charge via
the Internet at http://pubs.acs.org.
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